Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.927
Filtrar
1.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701745

RESUMEN

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Asunto(s)
Malaria Falciparum , Telómero , Humanos , Malaria Falciparum/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Femenino , Adulto , África del Sur del Sahara/epidemiología , Telómero/genética , Enfermedades Endémicas , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Población Negra/genética , Persona de Mediana Edad , Leucocitos/metabolismo , Homeostasis del Telómero/genética , Adulto Joven , Pueblo Africano Subsahariano
2.
Nature ; 625(7995): 578-584, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123677

RESUMEN

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Asunto(s)
Eritrocitos , Malaria Falciparum , Complejos Multiproteicos , Parásitos , Plasmodium falciparum , Proteínas Protozoarias , Animales , Humanos , Anticuerpos Neutralizantes/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Microscopía por Crioelectrón , Disulfuros/química , Disulfuros/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Merozoítos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Parásitos/metabolismo , Parásitos/patogenicidad , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura
3.
J Biol Chem ; 299(9): 105111, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517694

RESUMEN

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.


Asunto(s)
Antimaláricos , Eritrocitos , Glucólisis , Malaria Falciparum , Modelos Biológicos , Terapia Molecular Dirigida , Plasmodium falciparum , Humanos , Acidosis Láctica , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Hipoglucemia , Cinética , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/fisiología , Trofozoítos/patogenicidad , Trofozoítos/fisiología , Terapia Molecular Dirigida/métodos , Carga de Parásitos
4.
J Mol Biol ; 434(12): 167601, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35460670

RESUMEN

Plasmodium falciparum expresses clonally variant proteins on the surface of infected erythrocytes to evade the host immune system. The clonally variant multigene families include var, rifin, and stevor, which express Erythrocyte Membrane Protein 1 (EMP1), Repetitive Interspersed Families of polypeptides (RIFINs), and Sub-telomeric Variable Open Reading frame (STEVOR) proteins, respectively. The rifins are the largest multigene family and are essentially involved in the RBC rosetting, the hallmark of severe malaria. The molecular regulators that control the RIFINs expression in Plasmodium spp. have not been reported so far. This study reports a chromodomain-containing protein (PfCDP) that binds to H3K9me3 modification on P. falciparum chromatin. Conditional deletion of the chromodomain (CD) gene in P. falciparum using an inducible DiCre-LoxP system leads to selective up-regulation of a subset of virulence genes, including rifins, a few var, and stevor genes. Further, we show that PfCDP conditional knockout (PfΔCDP) promotes RBC rosette formation. This study provides the first evidence of an epigenetic regulator mediated control on a subset of RIFINs expression and RBC rosetting by P. falciparum.


Asunto(s)
Epigénesis Genética , Eritrocitos , Histonas , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Formación de Roseta , Animales , Eritrocitos/inmunología , Eritrocitos/parasitología , Eliminación de Gen , Histonas/metabolismo , Malaria Falciparum/parasitología , Familia de Multigenes , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Virulencia/genética
5.
PLoS One ; 17(2): e0260176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202423

RESUMEN

Spatial arrangement of chromosomes is responsible for gene expression in Plasmodium parasites. However, methods for rearranging chromosomes have not been established, which makes it difficult to investigate its role in detail. Here, we report a method for splitting chromosome in rodent malaria parasite by CRISPR/Cas9 system using fragments in which a telomere and a centromere were incorporated. The resultant split chromosomes segregated accurately into daughter parasites by the centromere. In addition, elongation of de novo telomeres were observed, indicating its proper function. Furthermore, chromosome splitting had no effect on development of parasites. Splitting of the chromosome is expected to alter its spatial arrangement, and our method will thus be useful for investigating its biological role related with gene expression.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromosomas/genética , Malaria/genética , Plasmodium berghei/genética , Animales , Centrómero/genética , Regulación de la Expresión Génica/genética , Malaria/parasitología , Plasmodium berghei/patogenicidad , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Roedores/parasitología , Telómero/genética
6.
PLoS One ; 17(1): e0262616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030215

RESUMEN

Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/µL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/µL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/µL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.


Asunto(s)
Resistencia a Medicamentos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Plasmodium falciparum/genética , Animales , Antimaláricos/farmacología , Pruebas con Sangre Seca/métodos , Monitoreo Epidemiológico , Haití , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Malaria/epidemiología , Malaria Falciparum/parasitología , Técnicas de Amplificación de Ácido Nucleico/métodos , Parásitos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN
7.
Sci Rep ; 12(1): 1411, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082339

RESUMEN

Globally, malaria is the major public health disease caused by plasmodium species and transmitted by the bite of the female anopheles mosquito. Assessment of the trend of malaria prevalence is important in the control and prevention of the disease. Therefore, the objective of this study was to assess the six year trend of malaria prevalence at the University of Gondar Comprehensive Specialized Hospital, northwest Ethiopia, from 2014 to 2019. A retrospective laboratory registration logbook review study was conducted on the malaria blood film examination results at the University of Gondar Comprehensive Specialized Hospital. The data was collected by using a data extraction tool and entered into SPSS version 20 for analysis. Descriptive statistics were used to summarize the socio-demographic characteristics of study participants and presented by graphs, tables and texts. The binary logistic regression was also used to test the association the trend of malaria prevalence and different factors like sex, age, year, and season. From a total of 17,500 malaria blood film examinations, 1341 (7.7%) were confirmed for malaria parasites. Of the confirmed malaria cases, 47.2%, 45.6% and 7.2% were P. vivax, P. falciparum and mixed infection, respectively. The proportion of P. vivax was the predominant species in the first three study years (2014-2016) and P. falciparum became the predominant species in the last three study years (2017-2019). The odds of malaria prevalence was lower by 68%, 60% and 69% in the year 2017, 2018 and 2019 compared to 2014, respectively. It was also 1.41 times higher in males than in females. Moreover, the odds of malaria prevalence were 1.60, 1.64, 2.45 and 1.82 times higher in the age group of < 5, 5-14, 15-24 and 25-54 years old compared to the older age groups (> 54 years old), respectively. Even there was a significant declining in prevalence trend; malaria is still a major public health problem. The study showed that there was high seasonal fluctuation from year to year. Moreover, males and the younger age groups were more affected than females and old age groups, respectively. Therefore, malaria prevention and control activities should be strengthened and require extra efforts by considering these variability.


Asunto(s)
Coinfección/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/patogenicidad , Plasmodium vivax/patogenicidad , Adolescente , Adulto , Anciano , Animales , Anopheles/parasitología , Niño , Preescolar , Coinfección/parasitología , Coinfección/transmisión , Etiopía/epidemiología , Femenino , Humanos , Lactante , Modelos Logísticos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Masculino , Persona de Mediana Edad , Mosquitos Vectores/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/crecimiento & desarrollo , Prevalencia , Estudios Retrospectivos , Estaciones del Año , Factores Sexuales
8.
Biomed Res Int ; 2021: 2754407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917681

RESUMEN

BACKGROUND: Malaria is one of the leading causes of morbidity and mortality especially in pregnant women and under-five-year-old children. However, data on the prevalence among delivering mothers, potential fetal transmission, and associated birth outcomes is lacking in Ethiopia. OBJECTIVE: To assess the prevalence of Plasmodium infection from peripheral, placental, and cord blood samples among delivering mothers in Kuch health center, Northwest Ethiopia. METHODS: An institution-based cross-sectional study was conducted among 218 delivering mothers from February to May 2021 in Kuch health center. Data on sociodemographic characteristics and clinical and obstetric history of mothers were collected using a structured questionnaire. Giemsa stained blood films from maternal capillary and placental and umbilical cord blood were examined for plasmodium infection. Data were analyzed using Statistical Package for the Social Sciences version 23 software package. RESULTS: The prevalence of maternal, placental, and umbilical cord malaria was 6.4% (14/218), 2.3% (5/218), and 0.5% (1/218), respectively. Plasmodium falciparum and Plasmodium vivax accounted 3.7% (8/218) and 2.8% (6/218), respectively, in maternal peripheral blood but only Plasmodium falciparum was detected in placental and umbilical cord blood samples. Maternal malaria had significant association with primigravida (χ 2 = 12.611, p = 0.002) and low birth weight (χ 2 = 8.381, p = 0.004). Placental malaria was also significantly associated with low birth weight (χ 2 = 32.255, p ≤ 0.001). CONCLUSION: The prevalence of malaria among delivering mothers was considerable. Maternal peripheral malaria had a significant association with gravidity and birth weight. Placental and umbilical cord malaria also had a significant association with birth weight. Pregnant mothers should be examined for malaria and receive appropriate treatment to prevent adverse birth outcomes.


Asunto(s)
Malaria/epidemiología , Madres/estadística & datos numéricos , Adulto , Peso al Nacer/fisiología , Estudios Transversales , Etiopía/epidemiología , Femenino , Sangre Fetal/parasitología , Feto/parasitología , Número de Embarazos/fisiología , Instituciones de Salud/estadística & datos numéricos , Humanos , Placenta/parasitología , Plasmodium falciparum/patogenicidad , Plasmodium vivax/patogenicidad , Embarazo , Complicaciones del Embarazo/parasitología , Atención Prenatal/estadística & datos numéricos , Prevalencia , Cordón Umbilical/parasitología , Adulto Joven
9.
PLoS Genet ; 17(12): e1009335, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928954

RESUMEN

Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.


Asunto(s)
Flujo Génico/genética , Genética de Población , Malaria Falciparum/genética , Plasmodium falciparum/genética , Animales , Variación Genética/genética , Genoma/genética , Geografía , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Secuenciación Completa del Genoma
10.
Sci Rep ; 11(1): 22578, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799605

RESUMEN

Anopheline mosquitoes are the sole vectors for the Plasmodium pathogens responsible for malaria, which is among the oldest and most devastating of human diseases. The continuing global impact of malaria reflects the evolutionary success of a complex vector-pathogen relationship that accordingly has been the long-term focus of both debate and study. An open question in the biology of malaria transmission is the impact of naturally occurring low-level Plasmodium infections of the vector on the mosquito's health and longevity as well as critical behaviors such as host-preference/seeking. To begin to answer this, we have completed a comparative RNAseq-based transcriptome profile study examining the effect of biologically salient, salivary gland transmission-stage Plasmodium infection on the molecular physiology of Anopheles gambiae s.s. head, sensory appendages, and salivary glands. When compared with their uninfected counterparts, Plasmodium infected mosquitoes exhibit increased transcript abundance of genes associated with olfactory acuity as well as a range of synergistic processes that align with increased fitness based on both anti-aging and reproductive advantages. Taken together, these data argue against the long-held paradigm that malaria infection is pathogenic for anophelines and, instead suggests there are biological and evolutionary advantages for the mosquito that drive the preservation of its high vectorial capacity.


Asunto(s)
Anopheles/genética , Perfilación de la Expresión Génica , Malaria Falciparum/genética , Mosquitos Vectores/genética , Plasmodium falciparum/patogenicidad , Transcriptoma , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Anopheles/metabolismo , Anopheles/parasitología , Evolución Molecular , Aptitud Genética , Interacciones Huésped-Parásitos , Malaria Falciparum/parasitología , Mosquitos Vectores/metabolismo , Mosquitos Vectores/parasitología , Odorantes , RNA-Seq , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/genética
11.
Front Immunol ; 12: 732667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659219

RESUMEN

Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Linfocitos T CD4-Positivos/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Adolescente , Adulto , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/parasitología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Modelos Animales de Enfermedad , Epítopos , Femenino , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Especificidad de la Especie , Vacunación , Adulto Joven
12.
Biomed Pharmacother ; 144: 112302, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678731

RESUMEN

Malaria eradication is still a major global health problem in developing countries, which has been of more concern ever since the malaria parasite has developed resistance against frontline antimalarial drugs. Historical evidence proves that the plants possess a major resource for the development of novel anti-malarial drugs. In the present study, the bioactivity guided fractionation of the oleogum-resin of Boswellia serrata Roxb. yielded the optimum activity in the ethyl acetate fraction with an IC50 of 22 ± 3.9 µg/mL and 26.5 ± 4.5 µg/mL against chloroquine sensitive (NF54) and resistant (K1) strains of Plasmodium falciparum respectively. Further, upon fractionation, the ethyl acetate fraction yielded four major compounds, of which 3-Hydroxy-11-keto-ß-boswellic acid (KBA) was found to be the most potent with IC50 values 4.5 ± 0.60 µg/mL and 6.25 ± 1.02 µg/mL against sensitive and resistant strains respectively. KBA was found to inhibit heme detoxification pathways, one of the most common therapeutic targets, which probably lead to an increase in reactive oxygen species (ROS) and nitric oxide (NO) detrimental to P. falciparum. Further, the induced intracellular oxidative stress affected the macromolecules in terms of DNA damage, increased lipid peroxidation, protein carbonylation as well as loss of mitochondrial membrane potential. However, it did not exhibit any cytotoxic effect in VERO cells. Under in vivo conditions, KBA exhibited a significant reduction in parasitemia, retarding the development of anaemia, resulting in an enhancement of the mean survival time in Plasmodium yoelii nigeriensis (chloroquine-resistant) infected mice. Further, KBA did not exhibit any abnormality in serum biochemistry of animals that underwent acute oral toxicity studies at 2000 mg/kg body weight.


Asunto(s)
Antimaláricos/farmacología , Boswellia , Hemo/metabolismo , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Triterpenos/farmacología , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Boswellia/química , Chlorocebus aethiops , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Malaria/sangre , Malaria/parasitología , Ratones , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidad , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Resinas de Plantas , Triterpenos/aislamiento & purificación , Triterpenos/toxicidad , Células Vero
13.
Parasit Vectors ; 14(1): 516, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620228

RESUMEN

BACKGROUND: Irrigation schemes may result in subsequent changes in malaria disease dynamics. Understanding the mechanisms and effects of irrigation on malaria vector bionomics and transmission intensity is essential to develop new or alternative surveillance and control strategies to reduce or control malaria risk. This study was designed to assess the effect of rice irrigation on malaria vector bionomics and transmission intensity in the Gambella Region, Ethiopia. METHODS: Comparative cross-sectional study was conducted in Abobo District of the Gambella Region, Ethiopia. Accordingly, clusters (kebeles) were classified into nearby and faraway clusters depending on their proximity to the irrigation scheme. Adult mosquito survey was conducted in February, August and November 2018 from three nearby and three faraway clusters using Centers for Disease Control and Prevention (CDC) light traps (LTs). During the November survey, human landing catch (HLC) and pyrethrum spray catch (PSC) were also conducted. The collected mosquitoes were morphologically identified to species and tested for Plasmodium infection using circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA). Furthermore, species-specific polymerase chain reaction (PCR) was performed to identify member species of the Anopheles gambiae complex. Chi-square and t-tests were used to analyze the data using the SPSS version 20 software package. RESULTS: A total of 4319 female anopheline mosquitoes comprising An. gambiae sensu lato, An. funestus group, An. pharoensis, An. coustani complex and An. squamosus were collected. Overall, 84.5% and 15.5% of the anopheline mosquitoes were collected from the nearby and faraway clusters, respectively. Anopheles gambiae s.l. was the predominant (56.2%) anopheline species in the area followed by An. pharoensis (15.7%). The density of anopheline mosquitoes was significantly higher in the nearby clusters in both HLCs [t(3) = 5.14, P = 0.0143] and CDC LT catches [t(271.97) = 7.446, P < 0.0001). The overall sporozoite rate of anopheline species from the nearby clusters was 10-fold higher compared to the faraway clusters. CONCLUSIONS: Significantly higher mosquito population density was observed in areas close to the irrigation sites. Sporozoite infection rate in the mosquito population was also markedly higher from the nearby clusters. Therefore, the irrigation scheme could increase the risk of malaria in the area.


Asunto(s)
Riego Agrícola , Anopheles/fisiología , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/fisiología , Animales , Anopheles/clasificación , Anopheles/parasitología , Estudios Transversales , Ecología , Etiopía , Conducta Alimentaria , Femenino , Humanos , Oryza , Plasmodium falciparum/patogenicidad , Densidad de Población , Esporozoítos/fisiología
14.
PLoS Pathog ; 17(10): e1009969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614006

RESUMEN

The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Virulencia
15.
Nat Commun ; 12(1): 5838, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611164

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria.


Asunto(s)
Antígenos de Protozoos/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Embarazo , Vacunación
16.
Parasit Vectors ; 14(1): 479, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526119

RESUMEN

BACKGROUND: Besides feeding on blood, females of the malaria vector Anopheles gambiae sensu lato readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castor bean Ricinus communis, on the ability of mosquitoes to transmit Plasmodium falciparum. METHODS: Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, level of P. falciparum infection and growth rate of the parasite. RESULTS: Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l-1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l-1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. CONCLUSIONS: Overall, our findings reveal that consumption of certain nectar phytochemicals can have unexpected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact which plants can have on the transmission of vector-borne diseases.


Asunto(s)
Alcaloides/farmacología , Anopheles/efectos de los fármacos , Anopheles/parasitología , Insecticidas/farmacología , Malaria Falciparum/transmisión , Mosquitos Vectores/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Piridonas/farmacología , Animales , Anopheles/clasificación , Conducta Alimentaria , Femenino , Resistencia a los Insecticidas , Malaria Falciparum/parasitología , Mosquitos Vectores/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Ricinus/química
17.
PLoS One ; 16(9): e0257219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34506564

RESUMEN

Antigen polymorphisms in essential malarial antigens are a key challenge to the design and development of broadly effective malaria vaccines. The effect of polymorphisms on antibody responses is fairly well studied while much fewer studies have assessed this for T cell responses. This study investigated the effect of allelic polymorphisms in the malarial antigen apical membrane antigen 1 (AMA1) on ex vivo T cell-specific IFN-γ responses in subjects with lifelong exposure to malaria. Human leukocyte antigen (HLA) class I-restricted peptides from the 3D7 clone AMA1 were bioinformatically predicted and those with variant amino acid positions used to select corresponding allelic sequences from the 7G8, FVO, FC27 and tm284 parasite strains. A total of 91 AMA1 9-10mer peptides from the five parasite strains were identified, synthesized, grouped into 42 allele sets and used to stimulate PBMCs from seven HLA class 1-typed subjects in IFN-γ ELISpot assays. PBMCs from four of the seven subjects (57%) made positive responses to 18 peptides within 12 allele sets. Fifty percent of the 18 positive peptides were from the 3D7 parasite variant. Amino acid substitutions that were associated with IFN-γ response abrogation were more frequently found at positions 1 and 6 of the tested peptides, but substitutions did not show a clear pattern of association with response abrogation. Thus, while we show some evidence of polymorphisms affecting T cell response induction, other factors including TCR recognition of HLA-peptide complexes may also be at play.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Adulto , Alelos , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Femenino , Humanos , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Péptidos/metabolismo , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Adulto Joven
18.
Nat Med ; 27(9): 1636-1645, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34518679

RESUMEN

The radiation-attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine provides protection against P. falciparum infection in malaria-naïve adults. Preclinical studies show that T cell-mediated immunity is required for protection and is readily induced in humans after vaccination. However, previous malaria exposure can limit immune responses and vaccine efficacy (VE) in adults. We hypothesized that infants with less previous exposure to malaria would have improved immunity and protection. We conducted a multi-arm, randomized, double-blind, placebo-controlled trial in 336 infants aged 5-12 months to determine the safety, tolerability, immunogenicity and efficacy of the PfSPZ Vaccine in infants in a high-transmission malaria setting in western Kenya ( NCT02687373 ). Groups of 84 infants each received 4.5 × 105, 9.0 × 105 or 1.8 × 106 PfSPZ Vaccine or saline three times at 8-week intervals. The vaccine was well tolerated; 52 (20.6%) children in the vaccine groups and 20 (23.8%) in the placebo group experienced related solicited adverse events (AEs) within 28 d postvaccination and most were mild. There was 1 grade 3-related solicited AE in the vaccine group (0.4%) and 2 in the placebo group (2.4%). Seizures were more common in the highest-dose group (14.3%) compared to 6.0% of controls, with most being attributed to malaria. There was no significant protection against P. falciparum infection in any dose group at 6 months (VE in the 9.0 × 105 dose group = -6.5%, P = 0.598, the primary statistical end point of the study). VE against clinical malaria 3 months after the last dose in the highest-dose group was 45.8% (P = 0.027), an exploratory end point. There was a dose-dependent increase in antibody responses that correlated with VE at 6 months in the lowest- and highest-dose groups. T cell responses were undetectable across all dose groups. Detection of Vδ2+Vγ9+ T cells, which have been correlated with induction of PfSPZ Vaccine T cell immunity and protection in adults, were infrequent. These data suggest that PfSPZ Vaccine-induced T cell immunity is age-dependent and may be influenced by Vδ2+Vγ9+ T cell frequency. Since there was no significant VE at 6 months in these infants, these vaccine regimens will likely not be pursued further in this age group.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Vacunas Atenuadas/administración & dosificación , Adulto , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Método Doble Ciego , Humanos , Lactante , Kenia/epidemiología , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad , Esporozoítos/efectos de los fármacos , Esporozoítos/patogenicidad , Linfocitos T/efectos de los fármacos , Vacunación , Vacunas Atenuadas/efectos adversos
19.
Sci Rep ; 11(1): 19183, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584166

RESUMEN

Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.


Asunto(s)
Antígenos de Protozoos/metabolismo , Antígenos de Superficie/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Humanos , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Merozoítos/genética , Merozoítos/inmunología , Merozoítos/metabolismo , Ratones , Plasmodium falciparum/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Conejos , Desarrollo de Vacunas
20.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576183

RESUMEN

Functional annotation of unknown function genes reveals unidentified functions that can enhance our understanding of complex genome communications. A common approach for inferring gene function involves the ortholog-based method. However, genetic data alone are often not enough to provide information for function annotation. Thus, integrating other sources of data can potentially increase the possibility of retrieving annotations. Network-based methods are efficient techniques for exploring interactions among genes and can be used for functional inference. In this study, we present an analysis framework for inferring the functions of Plasmodium falciparum genes based on connection profiles in a heterogeneous network between human and Plasmodium falciparum proteins. These profiles were fed into a hybrid deep learning algorithm to predict the orthologs of unknown function genes. The results show high performance of the model's predictions, with an AUC of 0.89. One hundred and twenty-one predicted pairs with high prediction scores were selected for inferring the functions using statistical enrichment analysis. Using this method, PF3D7_1248700 and PF3D7_0401800 were found to be involved with muscle contraction and striated muscle tissue development, while PF3D7_1303800 and PF3D7_1201000 were found to be related to protein dephosphorylation. In conclusion, combining a heterogeneous network and a hybrid deep learning technique can allow us to identify unknown gene functions of malaria parasites. This approach is generalized and can be applied to other diseases that enhance the field of biomedical science.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Humanos , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA